
Supplementary Material

Coordinate-based Texture Inpainting for Pose-Guided Image Generation

Artur Grigorev 1,2 Artem Sevastopolsky 1,2 Alexander Vakhitov 1 Victor Lempitsky 1,2

1 Samsung AI Center, Moscow, Russia
2 Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia

{a.grigorev,a.sevastopol,a.vakhitov,v.lempitsky}@samsung.com

1. Full body resynthesis
1.1. Architectures

In this subsection we describe architectures used for
resynthesis of full body onto a new pose in detail. Our
pipeline consists of 3 networks: the inpainting network
f(C,C ′;φ), the refinement network g(S,MS ,MN ,W,E)
and patch discriminator p(N,MN ). During a training pro-
cedure, we additionally employ a fixed VGG-16 network
and extract feature maps from predefined layers. Source
and target face images, UV render maps were preliminarily
resized to 256 x 256. UV space in SMPL format [3] was
also discretized by 256 x 256 grid. All networks architec-
tures are fully-convolutional and were mostly inspired by
the model described in work on Gated Convolutions [8].

1.1.1 Inpainting network

Architecture of the inpainting network is given in Table 1.
There, conv blkN , N = 1, .., 15, corresponds to one Gated
convolution [8] followed by batch normalization with fil-
ters, stride and duration as specified in the second column
of table 2; conv16 corresponds to a plain convolution, and
upsampleN , N = 0, 1, is a bilinear interpolation into a
twice larger resolution. Inputs to all convolutions in the net-
work were padded by reflection padding. We use a defini-
tion of Gated convolution originally proposed in [8]: this is
a block of 2 convolutions with kernels Wg and Wf , applied
to an input image I as follows and yielding output Out of
gated convolution.

Gating = conv(I,Wg),

Features = conv(I,Wf ),

Out = φ(Features) · σ(Gating),

where φ is an activation (ELU was used in our system)
and σ is the sigmoid function. Soft feature importance

masks Gating learn to ignore the provided gaps selectively
and let intermediate convolutions in the network attend only
relevant parts of an image.

Layer Filters/ Input Input Size Output Size
Stride
(Dilation)

Inpainting network

conv blk1 5 x 5 / 1 (1) [C, C′, 5 x H x W 32 x H x W

meshgrid]
conv blk2 3 x 3 / 2 (1) conv blk1 32 x H x W 64 x H

2 x W
2

conv blk3 3 x 3 / 1 (1) conv blk2 64 x H
2 x W

2 64 x H
2 x W

2

conv blk4 3 x 3 / 2 (1) conv blk3 64 x H
2 x W

2 128 x H
4 x W

4

conv blk5 3 x 3 / 1 (1) conv blk4 128 x H
4 x W

4 128 x H
4 x W

4

conv blk6 3 x 3 / 1 (1) conv blk5 128 x H
4 x W

4 128 x H
4 x W

4

conv blk7 3 x 3 / 1 (2) conv blk6 128 x H
4 x W

4 128 x H
4 x W

4

conv blk8 3 x 3 / 1 (4) conv blk7 128 x H
4 x W

4 128 x H
4 x W

4

conv blk9 3 x 3 / 1 (8) conv blk8 128 x H
4 x W

4 128 x H
4 x W

4

conv blk10 3 x 3 / 1 (8) conv blk9 128 x H
4 x W

4 128 x H
4 x W

4

conv blk11 3 x 3 / 1 (1) conv blk10 128 x H
4 x W

4 128 x H
4 x W

4

conv blk12 3 x 3 / 1 (1) conv blk11 128 x H
4 x W

4 128 x H
4 x W

4

upsample1 — conv blk12 128 x H
4 x W

4 128 x H
2 x W

2

conv blk13 3 x 3 / 1 (1) upsample1 128 x H
2 x W

2 64 x H
2 x W

2

upsample2 — conv blk13 64 x H
2 x W

2 64 x H x W

conv blk14 3 x 3 / 1 (1) upsample2 64 x H x W 32 x H x W

conv blk15 3 x 3 / 1 (1) conv blk14 32 x H x W 16 x H x W

conv16 3 x 3 / 1 (1) conv blk15 16 x H x W 2 x H x W

tanh — conv16 2 x H x W 2 x H x W

Table 1. Architecture of the inpainting network. It is as-
sumed that input tensor has a shape of 5 x H x W , where 5
is a number of channels andH xW is the spatial dimension
(256 x 256 in this case).

1.1.2 Refinement network

Refinement network consists of 4 parts: source encoder,
target encoder, intermediate residual blocks and decoder.
Their architectures are described in detail in Table 2 and
Table 3.

Source encoder takes as input a concatenation of four

1



tensors in source space, namely: source RGB image S,
source UV render Ms, source mask M ′

s (with ones in all lo-
cations where UV render is defined and zeros in all others)
and a meshgrid tensor. Target encoder is given tensors in
target space: predicted image produced by reprojecting re-
stored texture onto target UV render (N ), target UV render
itself (MN ), target mask (M ′

N ) as well as inpainted xy coor-
dinates reprojected onto target UV render (E) and a mesh-
grid tensor.

Target encoder is followed by 6 residual blocks which
inputs are added up to its’ outputs. Outputs of the last resid-
ual block are passed into the decoder, that mirrors structure
of each encoder.

Outputs of three target encoder layers (tgt blk2, tgt blk4,
tgt blk6) and three source encoder layers (src blk2,
src blk4, src blk6) are passed to their counterparts in the
decoder (conv blk5, conv blk3 and conv blk1 respectively)
via skip connections. Outputs of target decoder are passed
without change while those of source encoder are priorly
processed with warp(∗, E,M ′

N ) operation. This function
warps those pixels presented in target UV render with warp-
field E, and the remaining ones with meshgrid tensor via
spatial transformer. Each of the notations src blkN , N =
1, . . . , 3, tgt blkN , N = 1, . . . , 3, res blkN , N = 1, . . . , 6
corresponds to a block with plain Convolution (with Spec-
tralNorm [5]), batch normalization and Leaky ReLU (slope
= 0.01).

Layer Filters/ Input Input Size Output Size
Stride
(Dilation)

Source branch

src blk1 5 x 5 / 1 (1) [S, MS , M ′
S , 8 x H x W 256 x H x W

meshgrid]
src blk2 3 x 3 / 1 (1) src blk1 256 x H x W 256 x H x W

src blk3 3 x 3 / 2 (1) src blk2 256 x H x W 256 x H x W

Target branch

tgt blk1 5 x 5 / 1 (1) [N , MN , 10 x H x W 256 x H x W

M ′
N , E,

meshgrid]
tgt blk2 3 x 3 / 2 (1) tgt blk1 256 x H x W 256 x H

2 x W
2

tgt blk3 3 x 3 / 2 (1) tgt blk2 256 x H
2 x W

2 256 x H
4 x W

4

res blk1 3 x 3 / 1 (1) tgt blk3 256 x H
4 x W

4 256 x H
4 x W

4

res blk2 3 x 3 / 1 (1) [res blk1 + 256 x H
4 x W

4 256 x H
4 x W

4

tgt blk3]
res blk3 3 x 3 / 1 (1) [res blk1 + 256 x H

4 x W
4 256 x H

4 x W
4

+ res blk2]
res blk4 3 x 3 / 1 (1) [res blk2 + 256 x H

4 x W
4 256 x H

4 x W
4

+ res blk3]
res blk5 3 x 3 / 1 (1) [res blk3 + 256 x H

4 x W
4 256 x H

4 x W
4

+ res blk4]
res blk6 3 x 3 / 1 (1) [res blk4 256 x H

4 x W
4 256 x H

4 x W
4

+ res blk5]

Table 2. Architecture of the source and target branches of g.

Joint part

conv blk1 3 x 3 / 1 (1) [res blk5 768 x H
4 x W

4 256 x H
4 x W

4

+ res blk6,
warp(
src blk3,
E, E′)]
tgt blk3]

upsample1 — conv blk2 256 x H
4 x W

4 256 x H
2 x W

2

conv blk2 3 x 3 / 1 (1) [upsample1, 768 x H
2 x W

2 256 x H
2 x W

2

tgt blk2,
warp(
src blk2,
E, E′)]

upsample2 — conv blk4 256 x H
2 x W

2 256 x H x W

conv blk3 3 x 3 / 1 (1) [upsample2, 768 x H x W 256 x H x W

tgt blk1,
warp(
src blk1,
E, E′)]

conv4 3 x 3 / 1 (1) conv blk5 256 x H x W 3 x H x W

sigmoid — conv blk3 3 x H x W 3 x H x W

Table 3. Architecture of the joint part of the refinement net-
work g, which accepts output of source and target branch
and merges them into a final output.

1.1.3 Patch discriminator

To enhance photorealism of resulting images, we adopt
Patch discriminator introduced in [9]. It uses a stack of con-
volutional layers to map input images into 1-channel tensor,
where each element tells to which extent a certain image
segment is considered real. We use LS-GAN [4] modifica-
tion for this discriminator, so its’ outputs are in range from
0 to 1 and losses are computed as follows:

Lreal
d (N) = ‖1− d(N)‖2

Lfake
d (g, N̂) = ‖d(g(N̂))‖2

Lfake
g (g, N̂) = ‖1− d(g(N̂))‖2,

where Lreal
d and Lfake

d are losses for discriminator on real
and fake samples respectively, Lfake

g is a generator loss for
each generated (fake) sample, g and d are generator and
discriminator functions.

To condition Patch discriminator on human pose we pass
RGB images (real or fake) concatenated with corresponding
UV renders into it.

Architecture of Patch discriminator is reported in Ta-
ble 4. There, sn conv blkN , N = 1, . . . , 5, corresponds to
one plain Convolution (with SpectralNorm [5]), batch nor-
malization and Leaky ReLU (slope = 0.2).



Patch discriminator

Layer Filters/ Input Input Size Output Size
Stride
(Dilation)

sn conv blk1 4 x 4 / 2 (1) N , MN 5 x H x W 16 x H
2 x W

2

sn conv blk2 4 x 4 / 2 (1) sn conv blk1 16 x H
2 x W

2 32 x H
4 x W

4

sn conv blk3 4 x 4 / 2 (1) sn conv blk2 32 x H
4 x W

4 64 x H
8 x W

8

sn conv blk4 4 x 4 / 2 (1) sn conv blk3 64 x H
8 x W

8 128 x H
16 x W

16

sn conv blk5 4 x 4 / 1 (1) sn conv blk4 128 x H
16 x W

16 1 x H
16 x W

16

sigmoid — sn conv blk5 1 x H
16 x W

16 1 x H
16 x W

16

Table 4. Architecture of the patch discriminator p.

1.1.4 Loss functions

Our model is trained with a loss function comprised of four
elements.

NN loss is a loss function presented in [7] which operates
on outputs of relu1 2 layer of VGG19 net relu1 2(N) and
relu1 2(N̂). It traverses all local positions in relu1 2(N̂)
and sums up distances to the most similar feature in the cor-
responding 3× 3 window of relu1 2(N).

Content loss is a distance between features of a refined
output image N̂ and target view image N extracted from
several layers of a fixed VGG-16 network pretrained on
ImageNet. Let L ∈ {relu1 2, relu2 2, relu3 3, relu4 3} be
a function which accepts an image and yields a flattened
vector of features of this image extracted from a respective
layer of a pretrained network.

Lcontent(N̂ ,N) =
1

8
‖relu 1 2(N̂)− relu 1 2(N)‖2 +

1

4
‖relu 2 2(N̂)− relu 2 2(N)‖2 +

1

2
‖relu 3 3(N̂)− relu 3 3(N)‖2 +

‖relu 4 3(N̂)− relu 4 3(N)‖2

Style loss is a distance between Gram matrices of a re-
fined output image N̂ and target view image N extracted
from several layers of a fixed VGG-16 network pretrained
on ImageNet. Reusing the notation above, style loss is de-
fined as follows:

Loss Weight

NN 5e-1
Content loss 1e-1
Style loss 1e+5
Discriminator loss 1
Identity loss 1e+1
Texture source loss 1e+1
Texture target loss 1e+1

Table 5. Weights for each part of the loss function.

Lstyle(N̂,N) =

1

32

∥∥∥∥∥∥ 1

L1

∑
i,j

Gij(relu 1 2(N̂))−
1

L1

∑
i,j

Gij(relu 1 2(N))

∥∥∥∥∥∥
2

+

1

16

∥∥∥∥∥∥ 1

L2

∑
i,j

Gij(relu 2 2(N̂))−
1

L2

∑
i,j

Gij(relu 2 2(N))

∥∥∥∥∥∥
2

+

1

8

∥∥∥∥∥∥ 1

L3

∑
i,j

Gij(relu 3 3(N̂))−
1

L3

∑
i,j

Gij(relu 3 3(N))

∥∥∥∥∥∥
2

+

1

4

∥∥∥∥∥∥ 1

L4

∑
i,j

Gij(relu 4 3(N̂))−
1

L4

∑
i,j

Gij(relu 4 3(N))

∥∥∥∥∥∥
2

where Gij(L(A)) is a Gram matrix built upon a set of
flattened feature maps L(A) of an image A, and Lk is a
number of elements in the Gram matrix in the k-th term.

Discriminator loss Lfake
g is calculated using Patch

GAN and is described above in Section 1.1.3.
Identity loss is a distance between a source texture C

and an inpainted texture W , calculated only over visible
pixels:

Lid =

∑
i,j

|C ′
ij · (Cij −Wij)|∑

i,j

|C ′
ij |

Texture source loss is a L1 distance between the person
texture in source view and output of f calculated over those
texels visible in source view.

Texture target loss is a L1 distance between the person
texture in target view and output of f calculated over those
texels visible in target view.

During the first stage, that is, training inpainter network
f , all the loss functions, except for adversarial loss, are used
with weights listed in Table 5. At the second stage adver-
sarial loss is introduced, while losses that operate on texture
space (Identity loss, Texture source loss, Texture target loss)
are zeroed out.

1.2. Ablation study

We use four different models trained in same conditions
(i.e. same number of iterations, same loss functions and



same test/train splits) for ablation study.
Ours-Full is a full model that uses all components de-

scribed in 1.1.
In Ours-NoDeform source encoder of refinement net-

work and thus deformable skip connections are omitted.
Here source image, source UV render and source mask are
passed into target encoder along with its’ other inputs.

RGB inpainting also omits source encoder and replaces
coordinate-based inpainting with regular RGB inpainting.

In Baseline the whole texture inpainting procedure is
omitted as well as inpainter network. Source image, along
with source/target UV renders and source/target masks, are
passed into target encoder of refinement network to produce
reconstructions.

See the visual results of ablation study in Figure 2.

2. Face resynthesis
2.1. Architectures

For face resynthesis we were using exactly the same ar-
chitectures as in full body resynthesis (see Subsection 1.1).
Source and target face images, UV render maps were pre-
liminarily resized to 128 x 128 resolution. UV space pro-
vided by PRNet [2] was also discretized by 128 x 128 grid.

The experiment was conducted as a case study. See the
ablation study in the paper text and the additional visualiza-
tions in supplementary video.



SRC GT DSC[7] DPT[6] VUnet[1] No textures RGB inpainting Ours-NoDeform Ours-Full
Figure 1. Visual results of ablation study and comparison with state-of-the-art methods



SRC GT DSC[7] DPT[6] VUnet[1] No textures RGB inpainting Ours-NoDeform Ours-Full
Figure 2. More visual results of ablation study



Source person Source clothing Redressed Source person Source clothing Redressed
Figure 3. Additional examples of garment transfer procedure obtained using a simple modification of our approach. In each triplet, the
third image shows the person from the first image dressed into the clothes from the second image.



References
[1] Patrick Esser, Ekaterina Sutter, and Bjrn Ommer. A vari-

ational u-net for conditional appearance and shape genera-
tion. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018. 5, 6

[2] Yao Feng, Fan Wu, Xiaohu Shao, Yanfeng Wang, and Xi
Zhou. Joint 3d face reconstruction and dense alignment with
position map regression network. In ECCV, 2018. 4

[3] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. ACM Transactions on Graphics (TOG),
34(6):248, 2015. 1

[4] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen
Wang, and Stephen Paul Smolley. Least squares generative
adversarial networks. In Computer Vision (ICCV), 2017 IEEE
International Conference on, pages 2813–2821. IEEE, 2017.
2

[5] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative adver-
sarial networks. arXiv preprint arXiv:1802.05957, 2018. 2

[6] Natalia Neverova, Riza Alp Güler, and Iasonas Kokkinos.
Dense pose transfer. In The European Conference on Com-
puter Vision (ECCV), September 2018. 5, 6

[7] Aliaksandr Siarohin, Enver Sangineto, Stphane Lathuilire,
and Nicu Sebe. Deformable gans for pose-based human im-
age generation. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018. 3, 5, 6

[8] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Free-form image inpainting with gated con-
volution. arXiv preprint arXiv:1806.03589. 1

[9] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. arXiv preprint, 2017. 2


